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Abstract. We derive constraints on combinations of O(p6) chiral coupling constants by matching a recent two-loop
calculation of the πK scattering amplitude with a set of sum rules. We examine the validity of the natural expectation
that the values of the chiral couplings can be associated with physics properties of the light resonance sector. We focus,
in particular, on flavor symmetry breaking of vector resonances. A resonance chiral Lagrangian is constructed which
incorporates flavor symmetry breaking more completely than was done before. We use πK unsubtracted sum rules as
tests of the modelling of the resonance contributions to the chiral couplings. In some cases the O(p6) couplings are
found not to be dominated by the resonance contributions.

PACS. 12.39.Fe; 11.55.Hx; 13.75.Lb

1 Introduction

Important progress in the description of QCD via effective the-
ories was achieved by the extension of the chiral expansion
formalism [1–3] to the order p6 [4–6]. This raises the hope
of attaining high precisions in the description of low energy
physics using the chiral expansion, even in the case of the three-
flavor expansion which is expected to converge more slowly
than the two-flavor one. A large number of quantities have al-
ready been computed at chiral order six starting from the work
of [7]. Some representative examples concerning the two-flavor
case are in [8, 9] and in the three-flavor case in [10–15].

In practice, including the O(p6) corrections was shown to
clearly bring significant improvement for the two-flavor ex-
pansion [7, 8]. In this case, the corrections are dominated by
the chiral logarithms, the coefficients of which are known in
terms of the O(p2) and O(p4) coupling constants [1], while
the corrections proportional to the O(p6) couplings are com-
paratively smaller. The situation for the three-flavor expansion
is different, in that the role of the O(p6) couplings is much
more important. As an example, in order to determine the CKM
matrix element Vus at the one percent level based on experi-
mental data on K → πlν decays it is necessary to know the
values of the two low energy constants (LECs) Cr

12 and Cr
34

(see e.g. [16]).
In so far as only the order of magnitude of the chiral LECs

is concerned, it is possible to make very simple and general
statements [17, 18]. The order of magnitude can be argued to
depend only on Fπ and on the chiral scale Λχ �Mρ, so that
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the typical size of theO(p4) LECs should be Lr
i ∼ F

2
π/M

2
ρ and

that of the O(p6) LECs should be Cr
i ∼ F

2
π/M

4
ρ . The natural

question which arises, then, is whether it is possible to make
more quantitative estimates relating the values of the LECs to
known properties of the light resonances in the QCD spec-
trum. A detailed study along this line was performed in [19]
in which it was observed that it is indeed possible to re-
produce the values of the O(p4) LECs Lr

i(µ) with µ =Mρ,
which had previously been determined in a model indepen-
dent way [3], in terms of observables from the light resonance
sector.

A justification for such a relationship is provided by the
chiral sum rules (see e.g. [2] for a list). A typical example,
which was analyzed in [20, 21] is the LEC Lr

10 which can be
expressed as a convergent integral in terms of spectral func-
tions which can be determined experimentally from τ decays.
To a good approximation, the integral is found to be saturated
by the contributions from the ρ(770) and a1(1230) mesons. In
more complicated situations, for which the integrands cannot
easily be measured, one can appeal to the large Nc expansion.
Indeed, at leading order in 1/Nc QCD can be re-expressed in
terms of a Lagrangian involving an infinite set of weakly inter-
acting mesons [22]. The precise form of this Lagrangian is not
yet known from first principles, but the weak coupling prop-
erty allows one to relate the coupling constants to observables
using tree level calculations and then deduce the values of these
observables from experiment.

How well does resonance saturation perform in determin-
ing the size of theO(p6) LECs Cr

i is not known at present. The
main reason is that very few of these LECs have been deter-
mined so far. The purpose of this paper is to derive some con-
straints on the LECsCr

i obtained by equating the πK scattering
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amplitude in the subthreshold region, as constructed from ex-
perimental data in [23], with the chiral expansion calculation
up to order p6 which was performed in [15] (previous work
comparing dispersive representations with the chiral expansion
up to order p4 [24] was performed in [25, 26]). Some of the πK
subthreshold expansion parameters can be expressed as unsub-
tracted sum rules. Such expressions allow one to identify res-
onance contributions from experiment. We will use such results
to compare with the same resonance contributions as computed
starting from a largeNc type resonance chiral Lagrangian. We
will concentrate on a set of contributions arising from vector
meson resonances and which can be related to flavor symme-
try breaking in the meson multiplet. It is known that the ππ
or πK scattering amplitudes receive comparable contributions
from vector mesons and from scalar mesons. Describing scalar
mesons starting from a resonance chiral Lagrangian presents
several difficulties, notably in identifying the properties of the
nonet in the chiral limit and in the treatment of the wide reso-
nances. For this reason, we will concentrate here on the vector
resonances.

The plan of the paper is as follows. We start by recall-
ing some notation concerning the πK scattering amplitude
and some aspects of the correspondence between the expan-
sion parameters around the subthreshold point t= 0, s−u= 0
and the O(p6) LECs. Results concerning the LECs Cr

1 to Cr
4

(which are associated with six derivatives chiral operators) are
then presented. We next consider πK subthreshold parameters
associated with chiral operators involving four derivatives plus
one quark mass matrix. In this sector, serious discrepancies are
observed between the chiral predictions and the sum rule re-
sults. We point out some deficiencies of the resonance model
employed in [15] for the relevant O(p6) LECs and propose
a model for the vector meson resonances which implements
flavor symmetry breaking (to first order) in a more general way.
A phenomenological determination of all the parameters enter-
ing this resonance Lagrangian is performed and the complete
contribution of order p6 in terms of the basis of [6] is worked
out. Tests of this modelling are performed by comparing with
resonance contributions in unsubtracted sum rules. We finally
identify a combination of LECs which should be weakly sensi-
tive to the scalar resonance sector and discuss the result.

2 Results on Cr
1 to Cr

4

2.1 Notation

At first, let us recall some standard results and notation con-
cerning the πK scattering amplitude. Assuming isospin sym-
metry to be exact, πK scattering is described in terms of
the two independent isospin amplitudes F I(s, t, u), with I =
1/2, 3/2 and the Mandelstam variables, s, t, u, satisfy

s+ t+u= 2Σ, Σ =m2K +m
2
π . (1)

Under s, u crossing the following relation holds:

F
1
2 (s, t, u) =−

1

2
F
3
2 (s, t, u)+

3

2
F
3
2 (u, t, s) . (2)

It is then convenient to form the two combinationsF+ and F−

which are respectively even and odd under s, u crossing,

F+(s, t, u) =
1

3
F
1
2 (s, t, u)+

2

3
F
3
2 (s, t, u)

F−(s, t, u) =
1

3
F
1
2 (s, t, u)−

1

3
F
3
2 (s, t, u) . (3)

Under s, t crossing F+ and F− are simply proportional to the
I = 0 and the I = 1 ππ→KK amplitudes,

G0(t, s, u) =
√
6F+(s, t, u)

G1(t, s, u) = 2F−(s, t, u) . (4)

A region where one expects ChPT to apply is around the sub-
threshold point t= 0, s= u=m2K +m

2
π . The πK amplitude

can be characterized in the neighborhood of this point by per-
forming an expansion in powers of t and s−u [27]. The sub-
threshold coefficients C±ij are dimensionless quantities defined
from this expansion

F+(s, t, u) =
∑

ij

C+ij
tiν2j

m2i+2j
π+

,

F−(s, t, u)

ν
=
∑

ij

C−ij
tiν2j

m2i+2j+1
π+

, (5)

with

ν =
s−u

4mK
. (6)

2.2 Chiral O(p6) tree level contributions
to the subthreshold coefficients

The contributions at tree level from the O(p6) chiral La-
grangian to the subthreshold coefficients have been worked out
in [15] and can be found explicitly in this reference. We will
discuss what can be learned about the O(p6) LECs Cr

i from
these expressions. Let us begin by noting some general features
of the correspondence between the subthreshold coefficients
and the LECs. At first, the coefficients such that

C+ij : i+2j ≥ 4, C
−
ij : i+2j ≥ 3 (7)

get no contribution at all from the O(p6) LECs. This implies
that the chiral expressions at order p6 for these coefficients
obey convergent unsubtracted dispersions relations. As a sim-
ple example C+02 can be written as (which is easily derived
from (19) below),

C+02
∣∣
p4+p6

=
32m4Km

4
π

π

∫ ∞

m2+

ds′
ImF+(s′, 0)p4+p6

(s′−Σ)5
(8)

(with m+ =mK +mπ). In this expression one can compute
ImF+(s′, 0)p4+p6 by expanding over partial waves and, for
each partial-wave amplitude, using the chiral expansion of the
unitarity relation

Im f Il (s
′)p4+p6

=

√
λ

s
f Il (s

′)p2
[
f Il (s

′)p2 +2Ref
I
l (s

′)p4
]
. (9)
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In this manner, we could reproduce precisely the numerical re-
sult C+02 = 0.23 obtained in [15].

Next, the chiral expressions for the set of coefficients which
satisfy

C+ij : i+2j = 3, C
−
ij : i+2j = 2 (10)

involve the four LECs Cr
1, C

r
2, C

r
3, C

r
4 [15] which are asso-

ciated with the following four chiral Lagrangian terms (the
definitions of the various chiral building blocks uµ, hλν etc.
which appear below can be found, for instance, in [6])

O1 =
〈
uµ u

µ hλν h
λν
〉

O2 = 〈uµ u
µ〉
〈
hλν h

λν
〉

O3 = 〈hµν uρ h
µν uρ〉

O4 = 〈hµν (uρ h
µρ uν +uν h

µρ uρ)〉 . (11)

These terms contain six derivatives and do not involve quark
masses. We will discuss below the determination of these LECs
obtained from the subthreshold πK amplitudes as well as from
ππ amplitudes.

We next consider the subthreshold coefficients which sat-
isfy

C+ij : i+2j = 2, C
−
ij : i+2j = 1 , (12)

i.e. the three coefficients C+20, C
+
01, C

−
10. Their chiral expan-

sions involve, in addition to Cr
1, C

r
2, C

r
4 the eight LECs Cr

5 · · ·
Cr
8, C

r
10, · · · , C

r
13 and the three LECs Cr

22, C
r
23 C

r
25. We re-

produce the corresponding Lagrangian terms below for the
convenience of the reader:

O5 =
〈
(uµu

µ)2 χ+
〉
, O6 =

〈
(uµu

µ)2
〉
〈χ+〉 ,

O7 = 〈uµu
µ〉 〈uνu

νχ+〉 , O8 = 〈uµu
µuνχ+u

ν〉 ,

O10 = 〈χ+uµuνu
µuν〉 , O11 = 〈χ+〉 〈uµuνu

µuν〉 ,

O12 = 〈hµν h
µν χ+〉 , O13 = 〈hµν h

µν〉 〈χ+〉 ,

O22 = i 〈χ− {hµν , uµuν}〉 , O23 = i 〈χ−hµν〉 〈uµuν〉 ,

O25 = i 〈hµνuµχ−uν〉 . (13)

These terms contain four derivatives and a single insertion of
the quark mass matrix. The information provided by the πK
amplitude is not sufficient to determine separately all these
LECs. Previously, the LEC C12 (as well as the LEC C34) have
been determined based on the ∆S = 1 scalar form-factor [28]
by combining the chiral O(p6) calculations of [14] with the
dispersive construction method of [29]. Constraints on C12

Table 1. Results for combinations of Cr
1(µ) to Cr

4(µ) with µ= 0.77 GeV in units of 10−4 GeV−2

derived from the πK subthreshold parameters. Also shown are results based on the ππ amplitude and
from a resonance model

input Cr
1+4C

r
3 Cr

2 Cr
4+3C

r
3 Cr

1+4C
r
3+2C

r
2

πK : C+30, C
+
11, C

−
20 20.7±4.9 −9.2±4.9 9.9±2.5 2.3±10.8

πK : C+30, C
+
11, C

−
01 28.1±4.9 −7.4±4.9 21.0±2.5 13.4±10.8

ππ 23.5±2.3 18.8±7.2
Resonance model 7.2 −0.5 10.0 6.2

and C13 have also been obtained from ∆S = 0 scalar form-
factors [14].

Finally, the coefficients with i+2j = 0, 1: C+00, C
+
10, C

−
00

involve thirteen more O(p6) LECs among those associated
with chiral Lagrangian terms containing two or three insertions
of the quark mass matrix.

2.3 Determination of Cr
1, · · · , C

r
4

The set of subthreshold coefficients defined in (10) constrain
the values of the four LECs Cr

1 · · ·C
r
4. The relevant formulas

from [15] read

C+30
∣∣
Ci
=
1

2
(−7Cr

1−32C
r
2+2C

r
3+10C

r
4)
m6π
F 4π

C+11
∣∣
Ci
= 8 (3Cr

1+6C
r
3−2C

r
4)
m4πm

2
K

F 4π

C−20
∣∣
Ci
= 6 (−Cr

1+2C
r
3+2C

r
4)
m5πmK

F 4π

C−01
∣∣
Ci
= 32 (−Cr

1+2C
r
3+2C

r
4)
m3πm

3
K

F 4π
. (14)

The O(p4) LECs Lr
i contribute to these coefficients only via

one-loop diagrams such that one may use for the Lis the nu-
merical values determined at O(p4). The last two equations
(14) involve the same combination of LECs Cr

i . Therefore, we
can determine three combinations, for instance Cr

1+4C
r
3, C

r
2,

Cr
4+3C

r
3.

Independent information is provided by ππ scattering. The
ππ amplitude constrains the two combinations Cr

4+3C
r
3 and

Cr
1+4C

r
3+2C

r
2. The numerical values which we quote in

Table 1 make use of the expressions from [30, 31]:

rr5 = F
2
π (−8C

r
1−16C

r
2+10C

r
3+14C

r
4)

+
23F 2π

15360 π2m2K
+ log terms (15)

rr6 = F
2
π (6C

r
3+2C

r
4)+

F 2π
15360 π2m2K

+ log terms

and the numerical values for rr5, r
r
6 obtained in [32] from

a Roy equations analysis. The right-hand sides of (15) involves
a quadratic polynomial in log(m2K/µ

2) and log(m2η/µ
2)

which we have not determined. We have attempted to min-
imize its influence by performing the matching at a scale
µ2 =mKmη before evolving the scale toMρ.
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It is of interest to compare these results from those of the
resonance saturation model. In the case of Cr

1, · · · , C
r
4 it suf-

fices to consider resonances in the chiral limit as was the case
for the O(p4) LECs [19]. If one uses simply the same La-
grangian as in [19] (which was also used in the πK analysis
of [15]) one obtains

CV+S1 =
G2V
8M4V

−
c2d
4M4S

, CV+S3 = 0 ,

CV+S2 =
c2d
12M4S

−
c̃2d
4M4S1

, CV+S4 =
G2V
8M4V

. (16)

Contributions from resonance Lagrangian terms like
〈
∇λVλµ [hµν , u

ν ]
〉
,
〈
∇λVµν [hµλ, u

ν ]
〉

(17)

should, in principle, also be considered, but we will not do so
here1. In discussing such higher derivative terms, it is import-
ant to implement proper asymptotic conditions.

Numerical values are shown in Table 1, using the same
values for the couplings as in [19], i.e.

GV = 53MeV, cd = 32MeV, cm = 42MeV. (18)

We note that this value of GV is somewhat smaller than the
one which derives from the ρ→ 2π width (GV ∼ 64.1MeV;
see Sect. 3) but was shown to yield good results for the O(p4)
LECs. In the case of C2, which is OZI suppressed we show,
for illustration, the value derived from the OZI violation model
A of [34]. The table also shows that the results obtained using
C−20 as input and those using C−01 are compatible for Cr

1+4C
r
3

and for Cr
2 but not quite so for Cr

4+3C
r
3. The error, however,

does not take higher order chiral effects into account. The re-
sults which use C−01 are compatible with the ππ results. The
simplest resonance saturation model is seen to give correct
signs and order of magnitudes for the LECs shown in Table 1,
but the agreement is certainly not as good as in the case of the
O(p4) couplings.

3 Symmetry breaking in the vector meson
chiral Lagrangian revisited

3.1 Observation of some discrepancies

Let us now turn our attention to the three coefficientsC+20, C
+
01,

and C−10. As mentioned above, their chiral expansions get tree
level contributions from the Lagrangian terms, O5, · · · , O13
andO22, · · · , O25 which contain four derivatives and one quark
mass factor. Their chiral expansions also receive O(p4) tree
level contributions involving the LECs L1, L2 L3. In general,
in such a situation, the hope is that one may use a resonance
model estimate for the O(p6) LECs and then derive improved
determinations for the LECs Li. This idea was actually fol-
lowed in the series of papers [11, 13, 35] which used as experi-
mental input the pseudoscalar meson masses, decay constants

1 While this paper was being completed a preprint appeared [33]
containing a general discussion of resonance Lagrangian terms con-
tributing at order p6.

Table 2. Comparison of the dispersive results for three sub-threshold
parameters (last column) with the chiral calculation of [15] at order
p6. The second and third columns display results obtained when the
LECs Lr

i(µ) and Cr
i(µ) are set equal to zero at µ= 0.77 GeV. The

fourth column displays the full chiral result from [15]

(p4)Li=0 (p
6)Li=Ci=0 (p

4+p6)total Dispersive

C+20 0.0255 −0.0254 0.003 0.024±0.006

C+01 1.673 1.492 3.8 2.07±0.10

C−10 −0.0253 0.121 0.09 0.31±0.01

and theKl4 decay form-factors. Using the determination of the
chiral coupling constants obtained in these references from this
procedure, the three πK subthreshold coefficients can be pre-
dicted. The results obtained in [15] are reproduced in Table 2.
Looking at Table 2 it is rather striking that there is a serious dis-
crepancy, for all these three subthreshold coefficients, between
the chiral predictions and the dispersive calculations.

3.2 Should one blame the dispersive
representations?

A possible explanation for these discrepancies could be that the
dispersive calculations are not correct. Let us argue, consider-
ing the particular example of C+01 which is rather simple, that
this is unlikely to be the case. One may start with a fixed-t dis-
persive representation, at t= 0, of the amplitude F+(s, t) with
two subtractions,

F+(s, 0) = c+(0)+
1

π

∫ ∞

m2+

ds′
[
1

s′− s
+
1

s′−u

−
2(s′−Σ)(

s′−m2+
) (
s′−m2−

)
]
ImF+(s′, 0) .

(19)

The validity of this kind of dispersion relation as well as that
of the Froissart bound which ensures convergence can be estab-
lished in a rigorous manner [36, 37]. From (19) it is straight-
forward to derive the following sum rule for the subthreshold
parameter C+01:

C+01 =
8m2Km

2
π

π

∫ ∞

m2+

ImF+(s′, 0)

(s′−Σ)3
ds′ . (20)

(Note that unlike the case of C+02, this sum rule is useless for
deriving the chiral result.) The integrand needed in this sum
rule is displayed in Fig. 1. The following remarks can be made.
The contributions from the high energy region

√
s′ ≥ 2 GeV

are negligibly small. Most of the contributions are from the S
and the P waves; they are concentrated in the region

√
s′ <∼

1 GeV, and there are no numerical difficulties in computing the
integral. The S wave in the lower energy range is the part af-
fected with the largest error. In this region, one can compare
with ChPT calculations (which up to order six do not depend
on the LECs Cr

i): the difference is of the order of 20% at most
and the ChPT result for ImF+(s′, 0) tends to be smaller, and
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Fig. 1. Integrand to be used in the sum rule, (20)

not larger, than the one derived from experiment. In conclu-
sion, this sum rule seems fairly solid: any reasonable fit to the
experimental data of [38, 39] will give a number C+01 � 2.

3.3 Vector resonance chiral Lagrangian

Another possible cause for the discrepancies revealed in
Table 2 could be that the resonance saturation model used to
evaluate the LECs, Ci, needs to be improved. The coefficients
in Table 2 are associated with O(p6) operators containing one
quark mass factor such that the corresponding LECs are sen-
sitive to flavor symmetry breaking of the light resonances. We
will re-examine the case of the vector mesons here, and we
follow the approach to first construct a Lagrangian containing
the resonance fields and then integrate them out. A convenient
method for this construction (see e.g. [40]) is to make use of
non-linear representations of the chiral group [41]. For the pur-
pose of generating chiral Lagrangian terms it is also convenient
to adopt a homogeneous chiral transformation rule for all the
resonances:

R→ h[φ]Rh[φ]† . (21)

Such a transformation rule ensures that one can ascribe a defi-
nite chiral order to each resonance field. A detailed discussion
in connection with the O(p4) LECs can be found in [19, 42].
In [15] the vector field formalism [42] was used and flavor
symmetry breaking is described via the single term

LmV = fχ 〈Vµ [u
µ, χ−]〉 . (22)

This term is the unique one relevant to theO(p6) LECs because
in the vector field formalism the field Vµ has chiral order three.
The coupling constant fχ was determined such as to reproduce
the experimental value for the ratio Γ (K∗→Kπ)/Γ (ρ→
ππ), which gave

fχ =−0.025 . (23)

In seeking for an improvement we note that, in this formal-
ism, the symmetry-breaking effects induced from the masses

of the vector mesons are absent at order p6, which seem some-
what unnatural. This suggests us to investigate different for-
malisms. A discussion of symmetry breaking based on the
massive Yang–Mills approach was performed in [43]. We will
make use here of the formalism which uses anti-symmetric ten-
sors [2, 19] instead of vector fields2. The part which is relevant
for the O(p4) LECs was considered in [19]:

L0AT = −
1

2

〈
∇λVλµ∇νV

νµ
〉
+
1

4
M2V 〈VµνV

µν〉

+
FV

2
√
2

〈
Vµνf

µν
+

〉
+

iGV√
2
〈Vµνu

µuν〉 . (24)

From (24) one can deduce the chiral order of the resonance
field:

Vµν ∼O(p
2) . (25)

As a consequence, the kinetic energy term in (24) is O(p6),
while the other terms are O(p4). Let us now consider all pos-
sible terms which are chiral symmetry-breaking corrections to
the terms in (24). Neglecting OZI rule violation, we find that
there are six independent such terms which have chiral order
six (some of these have been considered also recently in [44]):

LmAT =
1

2
emV 〈χ+V

µνVµν〉+ i
gmV 1
MV
〈V µν{χ+, uµuν}〉

+ i
gmV 2
MV
〈V µνuµχ+uν〉−

fχ

MV
〈∇µV

µν [χ−, uν ]〉

+
fmV 1
MV

〈
Vµν
{
fµν+ , χ+

}〉
+
fmV 2
MV

〈
Vµν
[
fµν− , χ−

]〉
.

(26)

Only the first four of these terms play a role in πK scattering.
Instead of a single coupling constant, fχ, in the vector formal-
ism, one has four independent couplings here: emV , gmV 1, g

m
V 2,

fχ. Let us now discuss the determination of these couplings
from experiment.

3.4 Determination of the vector Lagrangian
coupling constants

3.4.1 Determination of emV

First, it is not difficult to determine emV based on the mass rela-
tions

M2ρ =M
2
V +8e

m
V B0m̂ ,

M2K∗ =M
2
V +4e

m
V B0 (ms+ m̂) . (27)

Isospin breaking is neglected here and we have denoted m̂ =
(mu+md)/2. For the numerics, we can use the results from

2 In [42] it was shown how these two formalisms can be made to
give exactly equivalent results for the O(p4) LECs. This necessitates
that a number of asymptotic constraints for Green’s functions, form-
factors or scattering amplitudes be implemented.
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the chiral expansion at leading order,

2B0m̂=M
2
π0 = (134.98MeV)

2 ,

ms

m̂
=
M2
K+
+M2

K0
−M2

π+

M2
π0

� 25.90 ,

B0(mu−md) =M
2
K+−M

2
K0−M

2
π++M

2
π0

�−0.285M2π0 . (28)

Using the experimental values of the K∗(892) and the ρ(770)
masses we obtain

emV � 0.22 . (29)

If, instead, one uses the masses of the φ(1020) and the ρ(770)
mesons one would obtain emV � 0.24, suggesting that the error
should be reasonably small for this quantity.

3.4.2 Determination of fχ and fmV 2

As a next step we consider the coupling constant fχ. In [15] fχ
was related to symmetry breaking in the decays of vectors into
two pseudoscalars. Here, we will argue that these decays deter-
mine the two couplings gmV 1, g

m
V 2. Concerning fχ, a physically

plausible estimate can be obtained by relating it to the decay of
the π(1300) resonance. Let us denote the π(1300) nonet matrix
by P and consider the Lagrangian,

Lπ(1300) =
1

2
〈∇µP∇µP 〉−

1

2
M2P
〈
P 2
〉
+ idm 〈Pχ−〉

+ iG′V 〈∇µV
µν [P, uν ]〉+ iG′′V

〈
Vµν
[
fµν− , P

]〉
.

(30)

This extends the Lagrangian considered in [19] by the last two
terms proportional to G′V andG′′V respectively and which have
chiral order equal to six. Integrating out the π(1300) meson,
one finds that the couplings fχ and fmV 2 which were appearing
in (26) are proportional respectively to G′V andG′′V :

fχ =G
′
V

dmMV

M2P
, fmV 2 =G

′′
V

dmMV

M2P
. (31)

The coupling dm was introduced in [19]. It can be estimated
by appealing to a chiral super-convergence sum rule associated
with the correlator of two scalar currents minus the correlator
of two pseudoscalar currents [2]. Saturating the sum rule from
the contributions of the pion, the π(1300) and the a0(980), one
gets the relation

8d2m+F
2
0 −8c

2
m = 0 . (32)

Using the value cm � 42MeV which was obtained [19] then
gives

dm � 26MeV . (33)

The coupling G′V can be related to the decay amplitude
π(1300)→ ρπ,

Γπ(1300)→ρπ =
2(G′V )

2p3cm
πF 2π

. (34)

The total width of the π(1300) is known to be rather large but
has not actually been very precisely determined (the PDG [45]
quotes a range of values between 200 and 600MeV). For def-
initeness, let us use the result obtained in [46] where one also
finds the ρπ decay mode to be the dominant one:

Γπ(1300)→ρπ � 268±50MeV. (35)

This gives the estimate

|G′V | � 0.23 , (36)

yielding

|fχ| � 2.8 10
−3 . (37)

This value is one order of magnitude smaller than the one ob-
tained in [15]. One consequence concerns the lifetime of the πK
atom which receives a contribution (via resonance saturation of
the LECs Ci) which is quadratic in fχ. If one uses the numer-
ical value (37) for fχ, the size of the O(p6) contribution to the
lifetime is rather small (see the detailed discussion in [47]).

A somewhat different approach is to consider the 3-point
correlation function 〈V AP 〉, model it in terms of a finite num-
ber of resonances, and constrain the coupling constants in order
to enforce the proper QCD asymptotic conditions [48, 49]. This
was reconsidered recently by Cirigliano et al. [50] who im-
proved on earlier work by including the π(1300) nonet in the
construction together with the vector, axial-vector and pion
multiplets. In this manner, they have obtained a determination
of the π(1300) couplings G′V , G′′V in terms of the vector and
axial-vector resonance masses,

G′V =−

√
M2A−M

2
V

2MA
, G′′V =−

√
M2A−M

2
V

8MA
. (38)

UsingMA =
√
2MV this gives

fχ �−4.2 10
−3, fmV 2 �−1.1 10

−3 . (39)

This method provides a determination of fχ which is in reason-
ably good agreement with the one based on the π(1300) decay
width and gives also the sign as well as a determination of the
coupling fmV 2.

3.4.3 Determination of gmV 1

The coupling gmV 1 can be determined from the decay ampli-
tudes of vector mesons into two pseudoscalars. The decay am-
plitudes have the following form:

T (Va→ φb φc) =MVaε · (p1−p2)Tabc . (40)

Correspondingly, the decay width is given by

Γ (Va→ φb φc) = |Tabc|
2 p
3
cm

6π
. (41)

Using the Lagrangian (26) these amplitudes get expressed as
a function of two combinations of the couplings gmV 1, g

m
V 2 and

fχ for which we introduce the notation

ĝmV 1 = g
m
V 1+

1

2
fχ

ĝmV 2 = g
m
V 2+fχ . (42)
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The amplitude for ρ+→ π+π0, at first, reads

Tρ+→π+π0 =
1

F 2π
Geff
V ,

Geff
V =GV +

4
√
2m̂B0
MV

(2 ĝmV 1+ ĝ
m
V 2) . (43)

Using the experimental values for the mass mρ = 775.5±
0.5MeV and the width Γ = 150.2±2.4MeV from [45] gives

Geff
V � 65.8MeV . (44)

Next, we consider the decaysK∗→Kπ and φ→KK̄.

TK∗+→K0π+ =

√
2

2FK0Fπ+

{
Geff
V +

4
√
2 ĝmV 1
MV

B0 (ms− m̂)

+
2
√
2 ( ĝmV 1− ĝ

m
V 2)

MV
B0(mu−md)

}
,

TK∗+→K+π0 =
1

2FK+Fπ0

{
Geff
V +

4
√
2 ĝmV 1
MV

B0 (ms− m̂)

+
2
√
2 ( ĝmV 1+ ĝ

m
V 2)

MV
B0(mu−md)

}
,

Tφ→K+K− =−

√
2 e2FV
6M2φ

2M2ρ −M
2
φ

M2ρ −M
2
φ

+

√
2

2F 2
K+

{
Geff
V +

8
√
2 ĝmV 1
MV

B0 (ms− m̂)

+
2
√
2 ĝmV 2
MV

B0(mu−md)

}
,

T
φ→K0K

0 =

√
2 e2FV
6M2φ

M2φ

M2ρ −M
2
φ

+

√
2

2F 2
K0

{
Geff
V +

8
√
2 ĝmV 1
MV

B0 (ms− m̂)

−
2
√
2 ĝmV 2
MV

B0(mu−md)

}
. (45)

These expressions include isospin-breaking contributions pro-
portional to mu−md and those proportional to e2FV induced
by the coupling of the neutral vector mesons to the photon.
We have also taken into account the influence of wave-function
renormalization of the pseudoscalar mesons. If we ignore iso-
spin breaking, i.e. set mu =md, then the decay amplitudes
(45) no longer depend on ĝmV 2, which allows us to determine
ĝmV 1. Combining the experimental values [45] for theK∗+ and
K∗0 decay widths intoKπ we obtain

ĝmV 1 � 6.0×10
−3. (46)

If one uses the φ decay widths intoK+K− andK0K̄0 instead,
one obtains a smaller but not very different value,

ĝmV 1 � 4.3×10
−3. (47)

From these two results one can infer ĝmV 1 = (5.2±1.5)×10
−3.

3.4.4 Determination of gmV 2

Finally, we have to determine gmV 2. The results of the previous
subsection shows that if one forms isospin-breaking combina-
tions,

TK∗+→K0π+−
√
2TK∗+→K+π0 ,

Tφ→K+K−−Tφ→K0K̄0 , (48)

the coupling gmV 2 is the only one which contributes. In prac-
tice, however, it turns out not to be possible to determine gmV 2
in this way. Precise experimental information exists for isospin
violation in φ decays but, in this case, there are significant
electromagnetic contributions as well, which are difficult to
evaluate. Further amplitudes which vanish in the isospin limit
are ω→ π+π− and ρ+→ π+η. These amplitudes have the fol-
lowing expressions:

Tω→π+π− =
GV

F 2π
(
M2ω−M

2
ρ

)

×

{
mu−md
ms− m̂

(
M2K∗−M

2
ρ

)
+
e2F 2V
3

}

+
2
√
2

F 2π

(2 ĝmV 1− ĝ
m
V 2)

MV
B0(mu−md) ,

Tρ+→π+η =

√
3Geff

V

4FπFη

(mu−md)

(ms− m̂)

+
2
√
2

√
3FπFη

ĝmV 2
MV
B0(mu−md) . (49)

In these cases the contribution proportional to gmV 2 can be es-
timated to be relatively small, so that it is again difficult to
precisely extract its value.

The coupling ĝmV 2 appears in the amplitude ρ→KK, as
one can see from the expression

T
(
ρ+→K+K

0
)

(50)

=
1

√
2F 2K

{
Geff
V +

4
√
2 ĝmV 2
MV

B0 (ms− m̂)

}
.

From an experimental point of view, one can hope to deter-
mine this amplitude from the τ decay process τ →KKντ .
It is customary to approximate the dynamics of τ hadronic
decays as proceeding via a few resonances [51]. In the case
of the KK channel, the ρ(770) and the ρ(1450) resonances
can contribute [52]. The resonance ρ(1450) has a rather small
coupling to KK [45] and its contribution is also suppressed
by phase-space such that it seems a plausible approximation to
saturate the integrated τ →KKντ decay width from just the
ρ contribution. In order to compute this decay width from our
resonance model we first introduce the charged vector current
matrix element which, in the isospin limit, involves a single
form-factor:

〈
K−(p1)K

0(p2)|d̄γ
µu|0
〉
= (p1−p2)

µFKV (s),

s= (p1+p2)
2 . (51)
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Computing the form-factor from our effective Lagrangian, we
obtain

FKV (s) (52)

= 1+
FV

F 2K

(
Geff
V +

4
√
2 ĝmV 2
MV

B0 (ms− m̂)

)
s

M2V − s
.

The τ decay rate intoKKντ has the following expression:

ΓKK = V
2
ud

G2FM
5
τ

768π3

∫ M2τ

4m2
K

ds

M2τ

(
1−
4m2K
s

) 3
2

×

(
1−

s

M2τ

)2(
1+
2s

M2τ

) ∣∣FKV (s)
∣∣2 . (53)

In practice, the formula (52), which is obtained from a tree
level calculation, does not account for the ρ meson width. One
may account for this effect in a phenomenological way by re-
placing M2V in the propagator in (52) by M2V − iMV Γ (s). In
the energy range relevant for τ decay we retain the contribu-
tions to the ρ width arising from the ππ and the KK channels
as well as the 4π channel, simply approximated as ωπ which
gives, in the region s≥ 4m2K ,

MV Γ (s)

=
M2V ΓV√
s

[(
s−4m2π
M2V −4m

2
π

) 3
2

+
1

2

(
s−4m2K
M2V −4m

2
π

) 3
2
]

+
G2ωρπ
4π

[(
s− (Mω+mπ)2

) (
s− (Mω−mπ)2

)] 3
2

24s
.

(54)

The coupling constant Gωρπ may be estimated using vector
meson dominance and the experimental value of the ω→ γπ
width [53]

G2ωρπ

4π
� 24GeV−2 . (55)

Using the expression (54) for the imaginary part of the ρmeson
propagator and the experimental value [45] of the τ →KKν
decay rate R= (15.4±1.6)×10−3 we obtain

ĝmV 2 � 0.015 . (56)

Ignoring completely the ρ width gives a larger value, ĝmV 2 �
0.022. Alternatively, one may estimate ĝmV 2 by making use of
an asymptotic constraint, namely imposing that the form-factor
FKV (s) goes as 1/s asymptotically. This yields a somewhat
smaller value ĝmV 2 � 0.011. This discussion allows us to esti-
mate that the error on the estimate (56) should be of the order
of 50%, i.e. ĝmV 2 = 0.015±0.007.

3.4.5 Determination of fmV 1

Finally, let us consider fmV 1. This parameter controls flavor
symmetry breaking in the matrix elements of the vector current
between a vector meson and the vacuum,

FK∗ −Fρ =
8
√
2 fmV 1
MV

B0 (ms− m̂) . (57)

We can extract the relevant information from the τ decay pro-
cesses τ → ρ−ντ and τ →K∗−ντ . Using the experimental
results from [45], we obtain

Fρ = 146.3±1.2MeV, FK∗ = 155.1±4.0MeV , (58)

from which we finally deduce

fmV 1 = 0.0027±0.0013 . (59)

3.5 Vector meson contributions to the LECs

Let us now integrate out the vector meson from the Lagrangian
of (24) and (26) and consider the O(p6) chiral Lagrangian
terms which are generated. One finds

L
(6)
AT =

G2V
4M4V

〈
∇λ[u

λ, uµ]∇ν [u
ν , uµ]

〉

−

(
emV G

2
V

2M4V
−

√
2GV g

m
V 1

M3V

)
〈[uµ, uν]u

µuνχ+〉

+
GV g

m
V 2√

2M3V
〈[uµ, uν ]u

µχ+u
ν〉

−
GV fχ√
2M3V

i 〈∇µ[χ−, uν][uµ, uν ]〉

−
GV FV

2M4V
i
〈
∇ν [u

ν , uµ]∇λf+λµ
〉

−
F 2V
4M4V

〈
∇λf+λµ∇νf

νµ
+

〉

−
FV fχ√
2M3V

〈f+µν∇
µ [χ−, u

ν ]〉

+

(
FVGV e

m
V

2M4V
−
2GV f

m
V 1√

2M3V
−
FV g

m
V 1√

2M3V

)

× i 〈f+µν {χ+, u
µuν}〉−

FV g
m
V 2√

2M3V
i 〈f+µνu

µχ+u
ν〉

+

(
emV F

2
V

4M4V
−
2FV f

m
V 1√

2M3V

)
〈
χ+f+µνf

µν
+

〉

−
FV f

m
V 2√

2M3V

〈
f+µν

[
fµν− , χ−

]〉

−
2GV f

m
V 2√

2M3V
i 〈f−µν [χ−, uµuν ]〉 . (60)

In the vector field formalism one term, proportional to f2χ, is
generated which does not appear in (60). In the spirit of [42] we
may simply add this term here3:

L(6)V =−
f2χ

2M2V
〈[uµ, χ−][u

µ, χ−]〉 . (61)

In this way, we recover exactly the results of [15] if we
set the extra coupling constants in our vector Lagrangian

3 Alternatively, one may describe spin one resonances in terms of
a pair of fields Vµν and Vµ. A more detailed discussion of this frame-
work will be presented elsewhere [54].
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equal to zero. Next, we can expand the chiral Lagrangian
terms over the canonical O(p6) basis established in [6]. After
some calculation, we obtain contributions to 45 different
LECs

CV1 =
G2V
8M4V

,

CV4 =
G2V
8M4V

,

CV5 =−
GV g

m
V 2√

2M3V
,

CV8 =
emV G

2
V

2M4V
−

√
2GV g

m
V 1

M3V
,

CV10 =−
emV G

2
V

2M4V
+

√
2GV g

m
V 1

M3V
+
GV g

m
V 2√

2M3V
,

CV22 =
G2V
16M4V

+
GV fχ

2
√
2M3V

,

CV24 =
1

n

G2V
4M4V

,

CV25 =−
3G2V
8M4V

−
GV fχ√
2M3V

,

CV26 =
G2V
4M4V

−
1

n2
G2V
2M4V

+
GV fχ√
2M3V

+
f2χ

M2V
,

CV27 =−
1

n

G2V
4M4V

+
1

n2
G2V
2M4V

,

CV28 =
1

n2
G2V
8M4V

,

CV29 =−
G2V
8M4V

−
1

n2
G2V
4M4V

−
GV fχ√
2M3V

−
f2χ

M2V
,

CV30 =
1

n2
G2V
4M4V

,

CV40 =−
G2V
8M4V

,

CV42 =−
G2V
8M4V

,

CV44 =
G2V
4M4V

,

CV48 =−
G2V
8M4V

,

CV50 =
GV FV

4M4V
+
fχFV√
2M3V

,

CV51 =−
G2V
4M4V

+
GV FV

4M4V
+
fχFV√
2M3V

,

CV52 =−
GV FV

4M4V
−
fχFV√
2M3V

,

CV53 =−
GV FV

8M4V
−
3F 2V
16M4V

−
fχFV

2
√
2M3V

,

CV55 =
GV FV

8M4V
+
3F 2V
16M4V

+
fχFV

2
√
2M3V

,

CV56 =−
GV FV

4M4V
+
3F 2V
8M4V

−
fχFV√
2M3V

,

CV57 =
GV FV

2M4V
+
F 2V
8M4V

+

√
2fχFV
M3V

,

CV59 =−
GV FV

8M4V
−
F 2V
4M4V

−
fχFV

2
√
2M3V

,

CV61 =
emV F

2
V

4M4V
−

√
2FV f

m
V 1

M3V
,

CV63 =−

√
2 fmV 1GV
M3V

+
emV FVGV

2M4V
−
FV g

m
V 1√

2M3V
,

CV65 =−
FV g

m
V 2√

2M3V
,

CV66 =
G2V
8M4V

,

CV69 =−
G2V
8M4V

,

CV70 =−
G2V
8M4V

−
GV FV

8M4V
+
F 2V
8M4V

−
fχFV

2
√
2M3V

,

CV72 =
GV FV

8M4V
−
F 2V
8M4V

+
fχFV

2
√
2M3V

,

CV73 =
GV FV

4M4V
−
F 2V
8M4V

+
fχFV√
2M3V

,

CV74 =−
G2V
4M4V

,

CV76 =−
GV FV

8M4V
+
F 2V
16M4V

−
fχFV

2
√
2M3V

,

CV78 =
GV FV

8M4V
+
F 2V
4M4V

+
fχFV

2
√
2M3V

,

CV79 =−
GV FV

8M4V
+
F 2V
8M4V

−
fχFV

2
√
2M3V

,

CV82 =−
GV FV

16M4V
−
F 2V
16M4V

−
fχFV

4
√
2M3V

−
fmV 2FV√
2M3V

,

CV83 =
3G2V
16M4V

+
fχGV

2
√
2M3V

−

√
2 fmV 2GV
M3V

,

CV87 =
F 2V
8M4V

,

CV88 =−
GV FV

4M4V
−
fχFV√
2M3V

,

CV89 =
F 2V
2M4V

+
GV FV

4M4V
,

CV90 =−
fχFV√
2M3V

,

CV92 =
F 2V
M4V
,

CV93 =−
F 2V
4M4V

. (62)

In these formulas n stands for the number of flavors and should
be set to n= 3.
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These results can be verified to agree with the ones obtained
in [33] when retaining the same resonance coupling constants
as in our Lagrangian. The correspondence in the notation be-
tween the coupling constants appearing in our (26) and those
in [33] is as follows:

emV
F 2V
2M4V

= λ
VV
6 +λ

SVV
gmV 1

FV

M3V
= λ

SV
1 ,

gmV 2
FV

M3V
=−λ

SV
2 , fχ

FV

M3V
= λ

PV
1 , (63)

fmV 2
FV

M3V
=−λ

PV
2 −

1

2
λ

PV
1 , f

m
V 1

FV

M3V
= λ

SV
3 .

These relationships may be derived by making a field redef-
inition on the scalar and pseudoscalar resonance fields used
in [33]:

S→ S̃+ cm
χ+

M2S
, P → P̃ + idm

χ−

M2P
. (64)

We note that the terms proportional to f2χ inCV25 andCV26 which
are generated in the V -formalism but not directly in the AT -
formalism have not been considered in [33].

3.5.1 Resonance saturation versus experiment for C61

Only one of the LECs which appear in (62) (except for C1 and
C4) has actually been determined from experiment. Let us con-
sider the 2-point correlator of two vector currents,

i
∫
d4xeipx

〈
0
∣∣T
(
V ijµ (x)V

ji
ν (0)

)∣∣ 0
〉

(65)

=
(
pµpν−p

2gµν
)
Πij(p2)+ gµνp

2Πij0 (p
2) ,

with

V ijµ (x) = ψ̄
i(x)γµψ

j(x) , (66)

and then consider the difference

∆Π =Πud(0)−Πus(0) . (67)

The chiral computation of this quantity at order p6 was first
performed in [55] and the result was confirmed and expressed
in terms of the canonical set of O(p6) LECs in [11]. The chiral
expansion involves no LEC at all at chiral order p4 and a sin-
gle LEC at chiral order p6, which is Cr

61. Using finite-energy
sum rule techniques, the value of∆Π can be determined from
experiment [55] (earlier related calculations were performed
in [56, 57]):

∆Πexp = 0.0203±0.0032 . (68)

This result translates into the following value for the O(p6)
LEC:

Cr
61(mρ) = (1.24±0.44)×10

−3GeV−2 . (69)

On the other hand, our resonance saturation model, using the
results from (62) and the determination of the resonance pa-
rameters discussed above, yields

CV61 = 2.10×10
−3GeV−2 (70)

(using FV = Fρ; see (58)) which is in qualitative agreement
with the experimental determination.

3.6 Comparison between resonance saturation
and the dispersive representations

We can now return to the πK scattering amplitude and com-
pute the vector meson contributions generated from the satura-
tion of LECs Ci as shown above (62). We quote the result for
the three subthreshold coefficients under consideration in this
section,

C+20
∣∣
CV
i
=

[
−
7

8
G2V
m2K +m

2
π

M4V
+
3

2
G2V e

m
V

m2K
M4V

−
3
√
2
GV
2 ĝmV 1m

2
K+ ĝ

m
V 2m

2
π

M3V

]
m4π
F 4π
,

C+01
∣∣
CV
i
=

[
2G2V

m2K+m
2
π

M4V
−8G2V e

m
V

m2K
M4V

+8
√
2GV

2 ĝmV 1m
2
K + ĝ

m
V 2m

2
π

M3V

]
m2πm

2
K

F 4π
,

C−10
∣∣
CV
i
=

[
3G2V

m2K+m
2
π

M4V
−4G2V e

m
V

m2K+2m
2
π

M4V

+4
√
2GV

2( ĝmV 1+ ĝ
m
V 2)m

2
K +(4 ĝ

m
V 1+ ĝ

m
V 2)m

2
π

M3V

]

×
mKm

3
π

F 4π
. (71)

A comparison of the numerical results for the resonance-
saturated part of these subthreshold parameters between the
vector field model and the antisymmetric tensor model is per-
formed in Table 3. One can see that the differences are substan-
tial. In two cases even the sign of the result is different.

One can perform a check of the resonance saturation model
in the following way. Consider the set of subthreshold coeffi-
cients which can be written as sum rules with no subtractions.
At this level, it is easy to identify a particular resonance R
contribution: it suffices to restrict the integration region to the
neighborhood of the resonance mass and to restrict the sum
over partial waves to the one which corresponds to the spin of
the resonance. This is illustrated in Fig. 2 which shows the in-
tegrands (in both the s and the t channel) associated with the
coefficient C+20. In this case, the contribution from the vector

Table 3. Results on the O(p6) part involving
the Cr

i LECs of some subthreshold coefficients,
using two different vector resonance saturation
models of these

V model [15] AT model

C+20

∣
∣
∣
CiV

−0.005 −0.010

C+01

∣
∣
∣
CiV

−0.27 0.30

C−10

∣
∣
∣
CiV

−0.11 0.21
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Fig. 2. C+20 integrands: s channel
(left figure) and t channel (right fig-
ure). The shaded area on the left
figure isolates the K∗(890) reson-
ance contribution and on the right
figure the scalar f0(980) one

Fig. 3. C−10 integrands: s channel
(left figure) and t channel (right fig-
ure). The shaded area on the left
figure isolates the K∗(890) reson-
ance contribution and on the right
figure the ρ(770) one

resonance can be isolated in the s channel, and the contribu-
tions from the scalar resonances can be identified in both the s
and the t channel. Figure 3 illustrates the situation for the coef-
ficient C−10: in this case the vector contribution appears in both
the s and the t channel.

From the point of view of ChPT, now, we can split the
contributions to a given subthreshold coefficient Cij into one
part, C loop

ij , which arises from loop diagrams, and one part,

C tree
ij , which arises from tree level diagrams. The latter piece,

up to chiral order p6, involves terms linear in the O(p4) LECs
Lr
i, terms which are quadratic in the O(p4) LECs and, finally,

those which are linear in the LECs Cr
i . Both C loop

ij and C tree
ij

depend on the chiral renormalization scale µ. Let us assume
that a proper scale µ exists such that C loop

ij corresponds to the

low energy integration part of the coefficient Cij and C tree
ij

to the higher energy part. We can then make a check of our
resonance saturation model by computingC tree

ij using the reso-

nance-saturated values of the LECs Li and Ci and comparing
the result with the dispersive integral calculation in which the
integral is computed over an energy range E > E0. The lower

boundary of the integration range should be somewhat below
the resonance mass.

We will only consider the role of the vector mesons here.
In the resonance saturation model, we correspondingly keep the
terms proportional to the couplingGV . The terms arising from
the LECs Cr

i were shown in (71). Upon using the resonance
model of [19] and retaining the contributions proportional toGV
the terms which are linear or quadratic in the LECsLr

i yield

C+20
∣∣
L+LL

=−
3

8

G2V
M2V

[
1−8

cdcm
(
m2K −m

2
π

)

F 2πM
2
S

]
m4π
F 4π
,

C+01
∣∣
L+LL

= 2
G2V
M2V

[
1−8

cdcm
(
m2K−m

2
π

)

F 2πM
2
S

]
m2Km

2
π

F 4π
,

C−10
∣∣
L+LL

= 3
G2V
M2V

[
1−8

cdcm
(
m2K −m

2
π

)

F 2πM
2
S

]
mKm

3
π

F 4π
. (72)

The comparison, as discussed above, of the resonance satu-
ration result with the dispersive resonance calculation is per-
formed in Table 4. The table shows that the results from the
antisymmetric tensor model for the relevant Ci when added to
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Table 4. Comparison between vector resonance contributions to three
subthreshold coefficients as computed from sum rules (last column)
and as computed from resonance saturation models of the LECs.
The second column shows the contributions which are linear and
quadratic in the LECs Li, while the third and fourth column show the
additional effect of the LECsCi using the vector or the antisymmetric
tensor model respectively

L+LL (L+LL+C)V (L+LL+C)AT Sum rule

C+20 −0.0065 −0.012 −0.017 −0.017

C+01 0.439 0.17 0.74 0.66

C−10 0.185 0.08 0.40 0.40

the contributions linear and quadratic in the Li compares rather
well with the resonance contributions as computed from the
sum rules.

3.7 A LEC combination
with dominant vector contributions

In general, the low energy couplings get important contribu-
tions from the light vector mesons and also from the light
scalar resonances [19]. Accounting for the scalar contribu-
tions is made difficult by several features. Firstly, the OZI
rule is rather strongly violated in the scalar meson sector. This
induces a large number of parameters in the resonance La-
grangian which cannot be determined unless some assumptions
are made: see e.g. [34] for a recent discussion and some ex-
amples of such assumptions. A second difficulty is caused by
the presence of the wide scalars (the σ or κ mesons). Inter-
ferences between the contributions from the wide scalars and
the narrow ones lead to structures in the partial wave ampli-
tudes (see e.g. Fig. 2 right) which are not well approximated by
computing tree level diagrams from a resonance Lagrangian.
For these reasons, it is useful to try to identify specific com-
binations of LECs which receive small contributions from the
scalar mesons. We can generate one such combination by start-
ing from πK subthreshold coefficients and forming the follow-
ing combination:

CNS = C
+
01+

2mK
mπ

C−10 . (73)

Indeed, this quantity satisfies an unsubtracted dispersion relation
and, by construction, it receives no resonant S-wave contribu-
tions from either the t or the s channel. The only resonant contri-
butions are from the l≥ 1 partial waves. The s channel integrand
is shown in Fig. 4, while the t channel integrand is the same, up
to a scale factor, as that shown in Fig. 3. Computing the integrals
we find the experimental value of this quantity:

CNS = 4.27±0.17 . (74)

Using the chiral expansion forCNS one finds that the following
combination of O(p4) and O(p6) LECs is involved:

Leff
2 (µ) = L

r
2+
(
m2K+m

2
π

)
(−2Cr

4+C
r
10 −2C

r
12+2C

r
22

+2Cr
23−C

r
25)+

(
4m2K+2m

2
π

)
(Cr
11−2C

r
13) .

(75)

According to the remarks made above, this combination of
LECs receives no contributions from the scalar mesons corres-
ponding to virtual exchanges in the πK scattering amplitude. It
does, however, pick up contributions from the scalars via tad-
pole type diagrams4. Such contributions have been accounted
for in our approach via flavor symmetry-breaking effects with
the exception, however, of the LEC Cr

12 (and for the 1/Nc sup-
pressed LECs). This LEC receives no contribution from the
resonance Lagrangian terms which we have considered. Fortu-
nately, direct determinations exist for Cr

12 based on the scalar
form-factors with either∆S = 0 [14] or∆S = 1 [28]. The lat-
ter determination seems more precise and gives a value in the
range −0.6≤ 104Cr

12(mρ) ≤ 0.6 GeV
−2, which implies that

the corresponding contribution in (75) is negligibly small.
We can determine the experimental value of Leff from the

experimental value of the combination CNS (74) and its chiral
expansion. If we use the expansion up to order p4 we find

Leff
2 (mρ)

∣∣
p4
� 1.32×10−3 . (76)

This value agrees rather well with that found from the res-
onance saturation model LV2 = 1.2×10

−3 [19]. If we now
include the O(p6) correction in the chiral expansion we find

Leff
2 (mρ)

∣∣
p4+p6

= (0.16±0.08)×10−3 . (77)

We would like now to compare with the result from the reson-
ance saturation model also including O(p6) corrections which
has the following expression:

Leff
2

∣∣
V
=
G2V
4M2V

{
1+
m2K+m

2
π

M2V
[1−2emV

+2
√
2
MV

GV
(2 ĝmV 1+ ĝ

m
V 2)

]}
. (78)

Numerically, using the results from Sect. 3.4, one obtains

Leff
2

∣∣
V
� 2.04×10−3 . (79)

Keeping in mind that the determination of the resonance La-
grangian couplings is approximate (due, in particular, to the use
of largeNc type approximations), it is nevertheless clear that the
value ofLeff

2 obtained above (79) from our resonance saturation
model differs quite substantially (by about a factor of ten) from
the experimental determination ofLeff

2 (µ)when µ=mρ.

3.8 Discussion

This problem cannot be attributed to the resonance model it-
self since we have checked that the results do correspond, at
least approximately, to the contribution from the resonance re-
gion in the sum rule expression of CNS (the integrand is shown
in Fig. 4). It must therefore be concluded that the values of the
LECs can fail to be dominated by the resonance contributions
at O(p6) with µ=mρ.

One obvious possible reason for the failure of resonance
saturation is that the variation of the LECs as a function of µ

4 We thank Roland Kaiser for pointing this out to us.
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Fig. 4. Integrand in the s variable for the subthreshold coefficient
CNS defined in (73)

Fig. 5. Chiral coupling combination Leff
2 (µ) (see (75)) as a function

of the scale µ compared with the vector meson saturation result

at O(p6) can be much faster than it is for the O(p4) LECs.
This is illustrated in Fig. 5 which shows the behaviour of Leff

2
as a function of the scale. The figure shows that, in fact, a scale
µ0 does exist such that resonance saturation of Leff

2 is exact, but
its value, µ0 � 0.45GeV is significantly smaller thanmρ.

One must also keep in mind that the renormalized coup-
ling constants are obtained from the bare ones by a minimal
subtraction procedure. Their values thus depend both on the
regularization scheme and on the subtraction convention. The
procedure adopted in ChPT (based on dimensional regulariza-
tion and modified minimal subtraction) was shown to lead to
natural values for the couplings at order p4. This, however, is
not guaranteed to remain true at arbitrary higher orders.

A remark is in order, finally, concerning the chiral expan-
sion of the quantity Leff

2 . In the resonance saturation model, the
contribution of order p6 is rather large, amounting to a 50%
correction as compared to the O(p4) one. At first sight, the
situation seems to be worse for Leff

2 (µ): if we set µ=mρ, the
contribution of order p6 practically cancels that of order p4. In
this case, however, the relative contributions strongly depend
on the scale: if we take µ � 0.55 GeV the O(p6) contribu-

tion will be much smaller than the O(p4) one, while if we
take µ� 0.45GeV the relative contributions become similar to
those in the resonance saturation model.

4 Summary

Our goal was to extract some model independent information
about the O(p6) chiral coupling constants, about which little
is known at present, and probe the validity, in this sector, of
the idea of resonance dominance. We used input from the πK
scattering amplitude in the subthreshold region derived from
experimental data using dispersion relations. In this way, we
generated three constraints on the four LECs C1 to C4 and
three constraints on eleven LECs among C5 to C22. These are
associated with chiral operators which involve one insertion of
the quark mass matrix. In line with the earlier work of [15] it
appears natural, assuming resonance dominance, to associate
the values of these LECs with flavor symmetry breaking in
the light resonance sector. In order to implement this, we have
considered a (vector) resonance Lagrangian which is more gen-
eral than the one used in [15]. We determined all the coupling
constants in this Lagrangian from experiment, in the spirit of
a large Nc approach. In principle, a more consistent approach
to the determination of such couplings is to appeal to asymp-
totic constraints [42]. In practice, the two approaches usually
give similar results and, furthermore, it is often not possible
to satisfy all the relevant asymptotic constraints using a mini-
mal number of resonances (e.g. [49, 58]). Here, in order to test
some of our estimates for the resonance content of the LECs,
we have used unsubtracted sum rules in which one restricts the
integration range to the resonance region.

One of our initial motivations was to try to understand the
reason for a number of significant discrepancies between the
chiral O(p6) predictions of [15] for certain subthreshold ex-
pansion parameters of the πK amplitude and the dispersive
results. We found that improving the vector resonance La-
grangian does not help in resolving these discrepancies. We
made no attempt to improve the scalar resonance Lagrangian,
but we identified a specific combination of chiral LECs which
should be insensitive to that sector (beyond the effect of gen-
erating flavor symmetry breaking). A clear outcome of our
analysis is that, if one sets the value of the chiral scale µ equal
to the ρ meson mass, then the value of this combination of
LECs is not dominated by the resonance contribution. We have
also encountered examples for which resonance dominance
was reasonable; see Sect. 3.5.1. This suggests that in parallel to
the efforts which are pursued in order to develop consistent res-
onance models (e.g. [33]) one should also try to obtain further
direct determinations of the LECs Ci.

This result may be compared with the observation made in
the baryon sector of ChPT [59] already at one loop. In dimen-
sional regularization, the one-loop corrections to the baryon
masses were found to be rather large, requiring, in order to
compensate for that, that the low energy couplings be set to
values which are unnaturally large. The origin of the problem
was traced to the regularization procedure and the physical in-
terpretation of the chiral scale µ. One expects µ to correspond
approximately to a momentum cutoff in the loop integrals.
The authors of [59] show that this expectation can break down
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when unequal mass particles propagate inside the loops. As
a possible cure to this problem they proposed to use a regular-
ization method different from dimensional regularization.
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25. B. Ananthanarayan, P. Büttiker, Eur. Phys. J. C 19, 517 (2001)
[hep-ph/0012023]
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